
Project Report COMS W4232 Advanced Algorithms
Reading-based Project: Online Convex Optimization

Nilaksh Agarwal
Department of Computer Science

Columbia University
New York, USA

na2886@columbia.edu

Katie Jooyoung Kim
Department of Computer Science

Columbia University
New York, USA

jk4534@columbia.edu

1 Problem Statement

Online problems deal with incomplete information, especially over a period of time. In particular,
online convex optimization (OCO) problems offer the following extension to traditional convex
optimization problems (Yuan and Lamperski, 2018): at time t we choose a vector xt in a convex set
S = {x : g(x) ≤ 0}. Then, we receive a convex loss function ft : S → R, which allows the definition
of cumulative regret RegretT (x

∗) =
∑T

t=1 ft(xt) −
∑T

t=1 ft(x
∗) where x∗ is defined as the optimal

solution to minx∈S
∑T

t=1 ft(x). This can be interpreted as the difference between actual (realized)
cumulative loss until time T and the cumulative loss under the “best possible choice”. The goal is to
obtain an algorithm which successively generates xt which minimizes the cumulative regret.

We note a few aspects of the above problem: for one, it is analogous to linear programming as
discussed in class. Instead of maximizing cTx subject to Ax ≤ b and x ≥ 0, we minimize regret
subject to S – with the additional challenge of varying xt over time. For another, while in standard linear
programming we focus solely on the feasible set of solutions that satisfy all constraints, in the OCO
setting we also consider algorithms that generate xt that may at some time steps t violate the constraint
g(x) ≤ 0. This leads to a natural extension of the problem: we minimize both the regret and the
cumulative constraint violations. Finally, we note that we would ideally like to have cumulative regret
to be sub-linear in T. Intuitively, we understand this as follows. As we advance in time, we “do better”
in the sense that we have smaller relative difference with the minimum possible loss up to that point.

In addition, we note the different classes of feedback availability in OCO problems: in particular,
a popular setting is bandit convex optimization in which we are not given the full loss function ft, but
rather only its value evaluated at xt, i.e. ft(xt).

Our goal is to examine and expose different recent approaches in handling online convex opti-
mization problems in a variety of feedback availability settings, and to compare and contrast the main
results and ideas.

2 Motivation

Online optimization problems have many applications, such as auctions, portfolio management, and on-
line spam filtering. In addition, it is useful to consider situations in which we take into account violations
of the constraint set S due to the following: in an offline setting where we have all the information, it
is possible to determine what “feasible” is in advance and to consider only solutions that respect the
corresponding constraints. One might think of the familiar LP setting – given that product A requires m
and n resources and is sold for x & product B requires p and q resources and is sold for y, what combi-
nation of A and B should we produce?. However, in an online setting, it may not be possible to always
guarantee that constraints will be satisfied – we can think of power supply constraints over time. There

are “surge” moments in which the constraints are violated, and they cannot be avoided, but they exist.
Online problems provide a formalisation for such situations.

3 List of Papers

• Online convex optimization with stochastic constraints (Yu et al., 2017)

• Online convex optimization for cumulative constraints (Yuan and Lamperski, 2018)

• Boosting for online convex optimization (Hazan and Singh, 2021)

• Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback (Agarwal
and Dekel, 2010)

4 Initial Observations

Most of the papers we are studying perform some variation/relaxation in the initial convex optimization
problem to achieve improvements in this space.

For example, (Agarwal and Dekel, 2010) changes the bandit feedback mechanism to allow for
two special cases, (i) a 2 point query from the convex set; and (ii) a d + 1 point query from the convex
set of dimension d. In these scenarios they are able to prove regret bounds close to the full information
case.

In (Hazan and Singh, 2021) they develop a boosting based approach both for the partial-information
(bandits) and full-information online convex optimization settings. They first start off with a weak-
learner that guarantees multiplicative approximate regret against the experts. On this, they employ a
boosting strategy that guarantees near optimal regret against the convex hull of the base class.

The authors of (Yu et al., 2017) introduce multiple stochastic functional constraints in the online
convex optimization problem. This is done to model stochastic environments or deterministic en-
vironments with noisy observations. These constraints lead to special cases such as online convex
optimization with long term constraints, stochastic constrained convex optimization, and deterministic
constrained convex optimization. There are able to obtain a O(

√
T) expected regret and constraint

violations.

(Yuan and Lamperski, 2018) changes the regret calculation, opting to use squared constraint vio-
lations (

∑(
[g(xt)]+

)2) over their regular summation (
∑

g(xt)). In the regular summation form, strictly
feasible solutions can cancel out the effects of violated constraints. Furthermore, it heavily penalizes
large constraint violations. They are able to improve the regret bound for strongly convex objectives.

5 Online convex optimization with stochastic constraints

5.1 Motivation

(Yu et al., 2017) proposes a new algorithm suitable for a generalization of (Zinkevich, 2003a). In
the latter, we consider online convex optimization over a known simple fixed set. In other words, the
constraints are known a priori, and only the convex loss functions f t(·) vary arbitrarily over time. In this
setting, we do not allow constraint violations; the sole aim is to develop a dynamic learning algorithm
such that the regret grows sub-linearly with respect to the number of rounds T . In particular, Zinkevich’s
algorithm is as follows: x(t + 1) = Pχ[x(t) − γ∇f t(x(t))] where Pχ indicates the projection onto the
feasible set (known a priori) χ and ∇f t(·) is the sub-gradient of f t(·). It is evident that this will require
the solution x(t) at each time-step to be feasible, and that the projection operation in each time-step will
effectively require a separate constrained optimization problem.

2

This framework can be impractical in real-life situations: for one, we may not have full knowl-
edge of the feasible set χ in advance; χ may also vary over time. For another, the constrained
optimization probelm posed by the projection operation may be a difficult problem in its own right –
then the overall algorithm will end up being inefficient. However, if the constraint functions gt(x) vary
entirely arbitrarily, then achieving sub-linear growth of regret and sub-linear growth of the cumulative
constraint violation

∑T
t=1 g

t(x(t)) is impossible (Mannor et al., 2009).

Building upon these observations, the authors analyze OCO with constraint functions that are not
entirely arbitrary. Instead, they consider stochastic constraints: the constraint functions gtk(x) are
generated i.i.d. from an unknown probability model (the subscript k indicates that there may be several
constraint functions). Hence, at each round t, the decision-maker receives a loss function f t(·) and i.i.d.
constraint function realisations. This framework leads to a number of differences between the analysis
to follow and the previous analysis by Zinkevich. For one, as we do not know the constraints in advance,
we may not be able to satisfy them at every time step. Hence, the aim will be to satisfy the constraints
in expectation. In addition, as we will now have constraint violations as a given, we will analyze the
growth of cumulative constraint violation as well as the growth of regret with respect to T . Nevertheless,
the goal remains the same: to bound the growth of both such that it is sub-linear with respect to T . In
particular, (Yu et al., 2017) examines two different kinds of bounds: the bounds of regret and cumulative
constraint violation in expectation, and the bounds with high probability.

5.2 Results
Within the described framework, the new algorithm proposed by (Yu et al., 2017) achieves the following.

• In expectation:

– O(
√
T) regret

– O(
√
T) cumulative constraint violation

• With probability ≥ 1− λ for any 0 < λ < 1:

– O(
√
T log(T)log1.5(1λ)) regret

– O(
√
T log(T)log(1λ)) cumulative constraint violation

Hence, we can take for instance λ = 0.1 to obtain O(
√
T log(T)) regret and O(

√
T log(T)) constraint

violations with probability at least 0.9.

5.3 Methodology
(Yu et al., 2017) introduces a new algorithm based on virtual queues. For each stochastic constraint func-
tion gtk(x) = gk(x;ω(t)), the authors introduce Qk(t), with Qk(1) = 0 for all k ∈ {1, 2, ...,m} and up-
date rule Qk(t+1) = max {Qk(t)+gtk(x(t))+[∇gtk(x(t))]T [x(t+1)−x(t)], 0}. Then, the authors define
Q(t) = [Q1(t), ..., Qm(t)]T , L(t) = 1

2∥Q(t)∥2, and ∆(t) = L(t + 1) − L(t). Intuitively, ∆(t) gives a
scalar measure of the change in Q(t), or the accumulation in Q(t). This in turn represents the accumula-
tion of constraint violations gtk(x). In addition, at each time step, the algorithm updates x(t+1) by choos-
ing the minimizer in X0 of V [∇f t(x(t))]T [x−x(t)]+

∑m
k=1Qk(t)[∇gtk(x(t))]T [x−x(t)]+α∥x−x(t)∥2

for constants V and α. We see in the sum of the second expression that the algorithm in effect chooses
to minimize ∆(t).

Finally, the authors show that ∀T ≥ 1, the algorithm guarantees that ∀k ∈ {1, ...,m},
∑T

t=1 g
t
k(x(t))

is bounded by ∥Q(T + 1)∥ + O(
∑T

t=1 ∥Q(t)∥). Hence, minimizing ∆(t) leads to smaller ∥Q(t)∥,
which bounds the cumulative constraint violation.

5.4 Applications
(Yu et al., 2017) discusses a specific application of the new learning algorithm to a real-life situation:
online job scheduling in distributed data centers. In particular, the authors consider a system consisting

3

of one front-end job router and 100 servers distributed geographically in 10 different zones; we must note
that the price of electricity can vary significantly across zones and across time. This leads to the natural
formulation of a loss function to be minimized (i.e. the total cost of electricity) and stochastic constraints
that should be satisfied in expectation (i.e. the jobs that must be served by the system). Formally, the
stochastic constraints to be satisfied are given for each time step t by gt(x(t)) = ω(t)−

∑100
i=1 hi(xi(t)),

where ω(t) corresponds to the incoming job (i.e. demand for electricity) at time t and each of the
hi(xi(t)) correspond to the job served by the server indexed by i (i.e. provided electricity).

Hence, we obtain a real-life setting which corresponds to the problem of online convex optimiza-
tion with stochastic constraints: we have a loss function (cost of electricity) varying over time, as well
as constraint functions that are generated i.i.d. from an unknown probability model. Finally, we can
accept that the requested jobs may not be served at all times; our constraint is not always satisfied. It
is sufficient for the constraint to be satisfied in expectation, or at least with high probability: exactly
what the proposed algorithm is useful for. Upon experimentation, the authors discover that the proposed
algorithm performs similarly to the best fixed strategy in hindsight in terms of both the loss (running
average electricity cost) and the constraint violations (running average unserved jobs).

6 Online convex optimization for cumulative constraints

6.1 Motivation

As discussed previously, we may examine the online convex optimization problem in many different
kinds of constraint settings. In particular, instead of stochastic constraints, we may consider cumulative
violations of a fixed constraint function g(x) over time: we take the sum

∑T
t=1 g(xt). The constraint

violation analysis differs in this setting as we no longer observe randomness. In addition, analysis of a
sum – as opposed to simply analyzing the constraint violations at each time step – allows the following
notion: it is possible for feasible solutions that are “far from the borders” (i.e. strictly feasible solutions)
to cancel out the effect of past or future constraint violations.

However, this approach can be impractical for situations in which large constraint violations fol-
lowed by feasible solutions “far enough from the constraint boundaries” to compensate are not
desirable. We may want to avoid large constraint violations at any point in time, regardless of whether
we are able to compensate later on or not.

Hence, (Yuan and Lamperski, 2018) focuses instead on
∑T

t=1([g(xt)]+)
2, where [g(xt)]+ =

max{g(xt), 0}. The authors call this term “square-clipped long-term constraint” or “square-
cumulative constraint”. When a solution is strictly feasible (i.e. g(xt) < 0), its contribution to the sum
is 0. On the other hand, when g(xt) > 0, the constraint violation is heavily penalized.

6.2 Results

In this framework, (Yuan and Lamperski, 2018) achieves the following results.

• For convex ft(x) and user-defined trade-off parameter β ∈ (0, 1):

– O(Tmax{β,1−β}) regret

– O(T 1−β) square-cumulative constraint

– O(T 1−β/2) cumulative constraint

• For strongly convex ft(x):

– O(log(T)) regret

– O(
√

log(T)T) cumulative constraint violation

4

6.3 Methodology

The authors start by observing the methodology of two previous papers: the basic projected gra-
dient algorithm defined by (Zinkevich, 2003a) and the augmented Lagrangian function defined by
(Mahdavi et al., 2012). In the latter, we enhance Zinkevich’s algorithm by taking the sub-gradient of
Lt(x, λ) = f t(x) +

∑m
i=1{λigi(x) − ση

2 λ2
i } instead of taking the sub-gradient of the loss function

f t(·). In addition, instead of projecting onto the feasible set X , the update rule projects onto a fixed ball
B which is a superset of X . This allows lower computational complexity for the projection operation,
with the trade-off that the constraints may not be respected at every time step t. Then, at each time step,
we update xt+1 = ΠB(xt − η∇xLt(xt, λt)) and λt+1 = Π[0,+∞)m(λt + η∇λLt(xt, λt)) where η is a
pre-determined step size and σ is a pre-determined constant.

With this background, the authors proceed to return to the very premise of this paper. Instead of simply
using the constraint functions gi(x) in the augmented Lagrangian function, they use [gi(x)]+ to solve
the problem minx1,x2,...,xT∈B

∑T
t=1 ft(xt)−minx∈S

∑T
t=1 ft(x) s.t.

∑T
t=1([gi(xt)]+)

2 ≤ O(T γ),∀i
and for γ ∈ (0, 1). Hence, we aim to achieve a sub-linear bound for the square-cumulative constraint,
as opposed to the cumulative constraint. In addition, the authors introduce a time-varying constant θt to
change the augmented Lagrangian function to Lt(x, λ) = ft(x) +

∑m
i=1{λi[gi(x)]+ − θt

2 λ
2
i }.

Finally, the algorithm performs at each time step t the updates xt+1 = ΠB(xt − η∂xLt(xt, λt))

and λt+1 =
[g(xt+1)]+

ση . We make two observations: the projection onto a ball implies that the constraints
are not necessarily satisfied at each time step, and ∂xLt(xt, λt) now only contains the sub-gradient with
respect to constraints gi(x) that are violated.

This algorithm improves upon existing bounds for the special case when ft(x) is strongly con-
vex. We recall the notion of strong convexity as follows: a function f is strongly convex if ∀x, y and for
some µ > 0, f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2∥y − x∥2. Intuitively, this provides a quadratic lower
bound on the growth of f . In this setting, the authors use time-varying step sizes ηt and constants θt to
obtain lower bounds on regret and cumulative constraint violation as detailed in 6.2.

6.4 Applications

The authors perform numerical experiments on two examples: a doubly-stochastic matrix approximation
problem and an economic dispatch problem from power systems. We will focus on the latter as it is
similar to the application seen in (Yu et al., 2017) and thus illustrates the differences between the two
papers.

In the economic dispatch problem, we aim to allocate power generation among the units such
that the constraints imposed are satisfied and the energy requirements are minimized (Karthikeyan et al.,
2013). The loss function to be minimized is now the cost of electricity plus the power demand that
is not fulfilled. This corresponds to the online convex optimization setting as the loss function is not
known a priori. On the other hand, the constraints are no longer stochastic: we impose constraints on
the emission levels of each generator and also require each generator to stay within its power generation
limit. Both the emission levels and the power generation limit are known in advance. As such, we see
the application of different constraint frameworks to two similar problems.

Through numerical experimentation, the authors show that the proposed algorithm indeed encour-
ages small constraint violations for each time step – in comparison with previous algorithms – while
maintaining running average objective cost very close to the best fixed strategy in hindsight. Hence,
in situations in which it is desirable to minimize constraint violations at each time step, the algorithm
introduced by (Yuan and Lamperski, 2018) provides an improvement upon previous approaches.

5

7 Boosting for Online Convex Optimization

7.1 Motivation
In the classical setting of predicting from expert advice, a learner iteratively makes decisions and
receives loss/reward values for it’s decisions. Since the loss functions are adversarially decided, a
bound on the absolute loss is not possible, however there exists a pool of experts, which have the least
loss/most reward for each loss function. Hence, the goal now becomes to minimize regret, i.e., the
difference between the total loss of the learner and the expert. For this problem, it has been established
in (Littlestone and Warmuth, 1994) to be bounded by O(

√
T log |H|) and this bound is tight. Here |H|

is the number of experts. However, these algorithms have a running time linear in O(|H|), which is
computationally infeasible.

To fix the problem, the authors come up with a method of using a weak-learner, that is slightly
better than random guessing, and employ boosting to achieve a more computationally efficient algorithm
and regret bound. They perform this boosting on these weak learners which perform comparably to
the convex hull of the base hypothesis class, with near optimal regret. The authors consider different
information feedback models such as full gradient feedback and linear bandit (function value) feedback.

Online Convex Optimization (OCO) generalizes the problem of prediction from expert advice to
a general convex decision set K ⊆ Rd, and adversarially chosen convex loss functions ft : Rd 7→ R.
The authors consider a hypothesis class H ⊆ C 7→ K, where each hypothesis h ∈ H maps a context (or
feature vector) in the context set ct ∈ C to an action h(ct) ∈ K.

Assuming we have W , an algorithm which is a γ-weak learner for the hypothesis class H which
performs better than a random guess, so for unit linear loss functions f (unit linear implies it’s range of
values is within 1) it’s total loss function is bounded by:

T∑
t=1

ft(W(ct)) ≤ γ ·min
h∈H

T∑
t=1

ft(h(ct)) + (1− γ)

T∑
t=1

fµ
t + RegretT (W),

Where fµ
t is the average value of this function under the uniform distribution, which is equivalent to

randomly guessing.

7.2 Results
In this paper, the authors show the the regret bound of the boosting algorithm for the full gradient feed-
back as:

T∑
t=1

ft(xt) − min
h∈CH(H)

T∑
t=1

ft(h(ct)) ≤ 4GDT

γ
√
N

+
2GD

γ
RegretT (W).

In this way, it is dependant only on the parameter N -number of weaker learners and γ-advantage of the
weak learner. Similarly, for the linear bandits feedback, the bound is:

E

[
T∑
t=1

ft(xt)

]
− inf

h∈CH(H)

T∑
t=1

ft(h(ct)) ≤ GD

√
T

(
16dT

γ
√
N

+
8d

γ
RegretT (W)

)
Thirdly, they do the analysis for the stochastic context as well, getting the following bound:

F (A) − F (h⋆) ≤ 2δG2 +
2D2

δγ2N
+

ĜD

γ
ε

Lastly, they run their algorithms on 3 real-world datasets, and use 3 weak learners (ridge regression,
decision stumps, and tiny MLPs) to obtain improvement in loss functions with upto 5 boosted learners,
gaining more than 15% improvement in this loss w.r.t a single weak learner.

6

7.3 Methodology
Similar to a regular boosting algorithm for learning theory, the authors determine an algorithm for these
weak learners.

Full Gradient Feedback
Firstly, in the full gradient setting, in every round, they define points

xi
t = (1− ηi)x

i−1
t + ηi

1

γ
W i(ct)

, where ηi = min{2
i , 1}, the initial x0t is sampled from convex set K at random, ct is the contextual

input for that round, and W i(ct) is the action obtained from the context using the weak learner. The final
action to be taken is

ΠK(x
N
t) = argmin

y∈K
∥y − xN

t ∥

Now using this action, we incur a loss of ft(xt). The main challenge here is that the weak learner only
has a γ-approximate regret guarantee, which is scaled by a factor of 1

γ . However, the action space is still
K and not 1

γK. To combat this, they modify the loss function to extend outside K

f̂t = XK,δ,κ[ft](x) = Mδ[ft(x) + κ ·Dist(x,K)]

Here Dist(x,K) = miny∈K ∥y − x∥ and Mδ[f] = infy∈Rd

{
f(y) + 1

2δ∥x− y∥2
}

is the Moreau-
Yosida regularization, which is a smoothing operator.

Now on obtaining a compatible loss function with our weak learners space, we can calculate the
gradient to be passed back to the learner as f i

t (x) = ∇f̂t(xi−1
t) · x. In this way, the authors create an

algorithm to boost weak learners.

For the proof of the regret bound of this algorithm, the authors first go about proving a regret
bound for the converted loss function (the chosen xNt vs optimal x∗). They do this by using the
smoothness and linearity of f̂t and f i

t . Lastly, they use a recurrence summation to arrive at the required
proof.

Linear Bandits Feedback
In the bandits setting, the cost function is linear and the feedback information is only the cost incurred
(not the gradient). For this they modify the algorithm by first sampling bt from a bernoulli distribution
with parameter η. If bt = 0, they play the same xt from the previous algorithm and pass ft = 0 back. Else
they play xt = it where it is a random coordinate basis vector ∈ Rd. They then calculate the modified
loss function f̂t which is 0 everywhere except at it.

f̂t(it) =
d

η
× ft(it)

The expectation of this is equal to the loss function.

This algorithm passes the full gradient to the weak learner (rather than just the loss value), and
hence it will be sub-linear in the size of the hypothesis class whenever the weak-learner’s regret bound
is sub-linear as well.

The proof for this follows similar approach to the first algorithm, however we now have an upper
bound on the gradients of the loss function f̂t, i.e., dG

η . This provides us with the required claim, and we
see the reduction of the regret bound is slower in the bandits setting as O(1/

√
N) vs O(1/N) for the

full gradient information case.

7

Furthermore, the authors describe one section on stochastic context optimization, which has an
analogous derivation but can be useful in certain contexts. Lastly, they also showcase experimental
results of their boosting algorithm on 3 real world datasets, showing significant improvement at times
(18%) for certain cases.

8 Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit
Feedback

8.1 Motivation
The authors define Online Convex Optimization as a game between a player and an adversary, where the
player picks a move xt from a convex set K ⊆ Rd for round t. The adversary then picks a loss function
lt : K 7→ R and the player incurs a loss lt(xt). The goal of the player is to minimize his regret, defined
as:

T∑
t=1

ℓt (xt)−min
x∈K

T∑
t=1

ℓt(x).

This is a measure of the difference between the players strategy and the best possible point (chosen in
hindsight). The authors talk about (Zinkevich, 2003b) who proves a regret bound of O(

√
T) when K is

compact and the loss functions are Lipschitz continuous. Similarly, (Hazan et al., 2007) prove a regret
bound of O(log T) if the loss functions are strongly convex.

However, if the player only has access to partial information, such as in the bandits scenario,
where the adversary only reveals the value of the loss function at xt instead of the entire loss function
lt, so the player doesn’t know the gradient of lt and cannot use any gradient descent techniques.
Furthermore, since the adversary plays second, they can always pick a loss function which will make the
regret bound linear (Since multiple loss functions exist for the given point, and the adversary can choose
to play all of them).

So, they create a fair competition for the player, the adversary can only use the players past
moves {x1, x2, . . . , xt−1} to decide the loss function lt and will not be able to see xt. For this setting,
(Abernethy and Rakhlin, 2009) prove a O(

√
T) regret bound that holds with a high probability.

Furthermore, even if the loss functions are strongly convex, (Dani et al., 2008) proved that the regret
bound will still be O(

√
T).

The authors compare the regret bounds of the Online Convex Optimization problem for the full
information setting O(log T) and the bandits case O(

√
T), and seeing significant discrepancy, look to

find methods to bring the bandits bound closer to the full information case.

For this, they introduce a multi-point bandits problem, where the player can query the loss func-
tion at k randomized points, rather than just one. So the loss function now becomes:

E
1

k

T∑
t=1

k∑
i=1

lt(yt,i)−min
x∈K

E
T∑
t=1

lt(x)

Where the expectation is over the randomness of the player.

8.2 Results
Building on the randomized gradient descent algorithm of (Flaxman et al., 2005), the authors show
a variant of it for k = 2 case which has a high probability regret bound of Õ(

√
T) for convex

Lipschitz-continuous loss functions chosen by an adaptive adversary. They also prove an expected regret

8

bound of O(log(T)) for strongly convex loss functions chosen by an adaptive adversary. This bound is
comparable to the one for the full gradient information setting, implying that observing two points is
almost as powerful as observing the full loss function.

For k = d + 1 where d is the dimension of the space, the authors show a deterministic algo-
rithm that can obtain a regret of O(

√
T) against convex Lipschitz and smooth loss functions, and a

regret of O(log(T)) against strongly convex and smooth loss functions. Moreover, these bounds hold
even when the adversary knows the action(s) of the player at timestep t as well, before picking the loss
function, similar to the full gradient information case. They conclude that having the ability to evaluate
the loss function at d + 1 points on each round is as powerful as observing the entire function when the
functions are smooth.

8.3 Methodology
For each of the two cases (k = 2 and k = d+ 1), the authors provide an algorithm to take actions.

2 queries per round
In this proposed algorithm, the factors are the learning rate ηt, exploration parameter δ and shrinkage
coefficient ξ. They initialize x1 = 0.

In every round, they pick a unit vector ut at random (random point on a origin centered unit
ball), and set the two points to be queried as xt + δut and xt − δut. After quering the loss function at
these two points, they calculate the estimator for the gradient g̃t = d

2δ (lt(xt + δut)− lt(xt − δut))ut.
This is similar to (Flaxman et al., 2005), which evaluates this gradient for a single point. The
authors here take the difference over two points. Lastly, they get the xt+1 for the next round as
xt+1 = Π(1−ξ)K (xt − ηtg̃t) where Π(1−ξ)K is the projection of the point onto a shrunk convex set. This
set is shrunk so that the two points next round still belong to K.

The key insight in this proof is that for the entire class of Lipschitz continuous functions, one
can use two function evaluations to construct gradient estimators that have a bounded norm, which leads
to much improved regret bounds. They get a bound for ∥g̃t∥ ≤ Gd using the property of G-Lipschitz
functions.

Furthermore, the authors obtain the regret bound with probability ≥ (1− δ1)

T∑
t=1

1

2
(ℓt (yt,1) + ℓt (yt,2))−

T∑
t=1

ℓt(x) ≤
(
d2G2 +D2

)√
T+G log(T)

(
3 +

D

r

)
+8dGD

√
2T log (1/δ1)

which is of order O(
√
T). Here, ∥x∥ ≤ D∀x ∈ K.

Similarly, if we take the assumption that lts are strongly convex, we get the following bound

E
T∑
t=1

1

2
(ℓt (yt,1) + ℓt (yt,2))−min

x∈K
E

T∑
t=1

ℓt(x) ≤ G log(T)

(
d2G

σ
+ 3 +

D

r

)
which is of order O(log T).

The main idea behind this proof is to use the G-Lipschitz continuous property of these functions
and derive bounds for them. Moreover, since we know ∥x∥ ≤ D∀x ∈ K, we can use this property to
derive a bound for the difference of the expectation. Lastly, they use the Hoeffding-Azuma inequality to
bound the probability as (1− δ1), to acheive the required bound.

An interesting open problem that the authors propose is to find a high probability bound for the
strongly-convex case, since their proof only calculates the bound in expectation.

9

General Smooth Functions
In the next section, the authors move past the unit ball constraint to general estimators based on random
sampling with other probability distributions. They prove the same, but with an additional L-smoothness
assumption, i.e., their gradient is L-Lipschitz continuous. They do this by bounding the difference be-
tween the expectation of the gradient estimator and the true gradient.

∥Etg̃t −∇ℓt (xt)∥ ≤ dLδ

4

Furthermore, the authors give some general conditions the generalized gradient estimator must ful-
fill, mainly (i) ∥xt − yt,i∥ ≤ δ for i = 1, . . . , k, (ii) ∥g̃t∥ ≤ G1 for some constant G1 and(iii)
∥Etg̃t −∇ℓt (xt)∥ ≤ cδ for some constant c. If these hold then:

E
T∑
t=1

1

k

k∑
i=1

ℓt (yt,i)− E
T∑
t=1

ℓt(x) ≤ G2
1

2

T∑
t=1

1

σ1:t
+G log(T)

(
1 + 2c+

D

r

)
.

The proof of this involves taking the gradient bound and then the expectation of the expression to arrive
at the result.

d+1 queries per round
In this algorithm, to query (d+1) points, the authors query the point xt (same as the previous algorithm)
and d points as xt + δei where ei are the coordinate axis (for each of the d dimensions). Lastly, the
gradient estimator is calculated as

g̃t =
d

2δ
(ℓt (yt,1)− ℓt (yt,2)) eit .

So they can apply the theorem from the previous question to get an O(log T) bound.

Deterministic algo for adaptive adversaries
In the last section, the authors extend their results to adversaries who can decide their loss function lt
after seeing the query point(s) xt,i. So, in this section, rather than a gradient descent based algorithm, the
authors describe a deterministic algorithm for achieving the optimal regret bound. It is a modification of
the Newton Step Algorithm, called the e Bandit Online Newton-Step algorithm (BONES).

Here, the authors showcase a matrix projection using At = g̃g̃T and use this to find the next
xt+1. Their proof involves proving that the update step for the BONES algorithm is equivalent to the
Newton Step algorithm, and using the bounds proven from it. They follow the proof from (Hazan et al.,
2007) to get the final bounds as

∑T
t=1

1
d+1

(
ℓt (xt) +

∑d
i=1 ℓt (xt + δei)

)
−minx∈K

∑T
t=1 ℓt(x) ≤ 4d

(
GD + 1

α

)
log

(
1 + Td4D2

64

)
+ log(T)

(
DL

√
d

2 + 2GD
r

)
+ o(log(T))

The main idea involves using a second-order property of exp-concave functions ((Hazan et al., 2007)
Lemma 3).

9 Conclusions

Online convex optimization (OCO) problems come in many flavors depending on the formulation of
the constraints as well as the decision maker’s access to information. In this survey, we have examined
four such flavors: OCO with stochastic constraints, with cumulative constraints, with boosting, and with
multi-point bandit feedback. Each provides a unique approach to addressing OCO problems in different
settings, and leads to reflection on the strategies one may use to best adapt to the problem in hand.

10

References
Jacob Abernethy and Alexander Rakhlin. 2009. Beating the adaptive bandit with high probability. In 2009 Infor-

mation Theory and Applications Workshop, pages 280–289. IEEE.

Alekh Agarwal and Ofer Dekel. 2010. Optimal algorithms for online convex optimization with multi-point bandit
feedback. In Colt, pages 28–40. Citeseer.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. 2008. Stochastic linear optimization under bandit feedback.
In Proceedings of the 21st Annual Conference on Learning Theory.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. 2005. Online convex optimization in
the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 385–394.

Elad Hazan, Amit Agarwal, and Satyen Kale. 2007. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2):169–192.

Elad Hazan and Karan Singh. 2021. Boosting for online convex optimization. In International Conference on
Machine Learning, pages 4140–4149. PMLR.

V. Karthikeyan, S. Senthilkumar, and V. J. Vijayalakshmi. 2013. A new approach to the solution of economic
dispatch using particle swarm optimization with simulated annealing. CoRR, abs/1307.3014.

N. Littlestone and M.K. Warmuth. 1994. The weighted majority algorithm. Information and Computation,
108(2):212 – 261.

Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. 2012. Trading regret for efficiency: online convex optimization
with long term constraints. The Journal of Machine Learning Research, 13(1):2503–2528.

Shie Mannor, John N Tsitsiklis, and Jia Yuan Yu. 2009. Online learning with sample path constraints. Journal of
Machine Learning Research, 10(3).

Arkadi Nemirovski. 2004. Prox-method with rate of convergence o (1/t) for variational inequalities with lips-
chitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229–251.

Hao Yu, Michael Neely, and Xiaohan Wei. 2017. Online convex optimization with stochastic constraints. Ad-
vances in Neural Information Processing Systems, 30.

Jianjun Yuan and Andrew Lamperski. 2018. Online convex optimization for cumulative constraints. Advances in
Neural Information Processing Systems, 31.

Martin Zinkevich. 2003a. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-
ings of the Twentieth International Conference on International Conference on Machine Learning, ICML’03,
page 928–935. AAAI Press.

Martin Zinkevich. 2003b. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-
ings of the 20th international conference on machine learning (icml-03), pages 928–936.

11

http://arxiv.org/abs/1307.3014
http://arxiv.org/abs/1307.3014

