
Final Report COMS-W4995
Causal Inference and Deterministic Relations

Nilaksh Agarwal
Department of Computer Science

Columbia University
New York, USA

na2886@columbia.edu

Abstract

Deterministic relationships form an integral part of many mechanisms from physics, chemistry, etc. and
current Causal Models are unequipped to handle these relations. Through this paper, I aim to provide a
framework to handle determinism within the Causal Framework, building on the D-separation framework
from (Geiger et al., 1990).

The main rules of Causal Calculus (called Do-calculus) provide a complete method of identifying causal
interventional effects through expressions. In this paper, I provide a similar set of rules for the identifi-
cation of causal interventional effects in the presence of determinism, and provide some examples where
these rules can be utilized.



1 Background

We first start with a recap of relevant topics from literature, which we will utilize to build our
Deterministic Causal Calculus.

1.1 Causal Diagrams and SCMs

To completely understand the causal relationship of a system, we aim to create a Structured
Causal Model (SCM) (Galles and Pearl, 1998). It consists of a 4-tuple < V,U,F , P (u) >

• V = {V1, . . . , Vn} are endogenous variables

• U = {U1, . . . , Um} are exogenous variables

• F = {f1, . . . , fn} functions determining V
vi → fi(pai, ui), Pai ⊂ V, Ui ⊂ U

• P (u) is a distribution over U

Moreover, every SCM induces a graphical model called a Causal Diagram (DAG) where:

• Each Vi ∈ V is a node

• There is a W → Vi for W ∈ Pai

• There is a Vi L9999K Vj whenever Ui ∩ Uj ̸= ∅

A B C

Figure 1: A sample Causal Graph.

If the graph contains no bi-directed edges (i.e., no nodes share any exogenous variables) the
graph is said to be Markovian. Otherwise, it is said to be semi-Markovian.

We can employ the following method to convert a semi-markovian graph to a markovian one:
The only caveat here is we are not allowed to condition on the newly introduced variables

(e.g. X).

1.2 Deterministic Relationships

In the real world, we do not just deal with probabilistic relationships between variables. Some-
times, we have variables that are deterministically dependant on their parents (i.e.) they do not
contain any exogenous variables in their function.

vi → fi(pai), Pai ⊂ V

These variables, conditioned on their parents, are independent of all other variables, not
merely it’s ancestors.



1.3 d-Separation
In a standard Graphical Model (without determinism) we can identify independence between
variables using a concept called d-Separation.
Consider the question of whether sets of nodes X and Y are independent given Z.

1. Look at every path from X to Y in the graph

2. A path is active if every triplet in it is active (given Z).

3. If any path is active, X and Y are not independent

For any combination of triplets, the following possibilities can occur

Figure 2: Active/Inactive Triplets in Graph

So, if X and Y are independent (given Z) in the graph, they are said to be d-separated by Z.

A node of the form X → Z ← Y is said to be a collider. Another equivalent definition of a
path being active is:

A path p is active by Z if every collider node (wrt p) either is or has a descendant in Z and
every other node along p is outside Z. Otherwise, the path is said to be blocked by Z.



1.4 D-Separation
In addition to the conditions present in d-separation, consider the following graph:

A B

C D

E

Figure 3: Causal Graph with Determinism

Here a double circle is used for a deterministic (functionally determinable) node. So, Node
E is determined entirely by the value of node C and D. Hence, A and B are not D Separated
conditioned on C and D (even though they are d-separated given the same conditions).

This leads to additional considerations in our algorithm for D-Separation. For a path to now
be declared active, we also must look at the impact the conditioning set has on the deterministic
nodes. Hence, if any node is functionally determined given the conditioning set, WLOG it can
be added to the conditioning set. Moreover, any deterministic node without a parent is always
conditioned on. (Geiger et al., 1990)

This leads us to a definition of Independence given determinism, i.e., D-Separation.

X Y

Z

A

(a) X ̸⊥⊥ Y

X Y

Z

A

(b) X ̸⊥⊥ Y

X Y

Z

A

(c) X ̸⊥⊥ Y

X Y

Z

A

(d) X ̸⊥⊥ Y |Z

X Y

Z

A

(e) X ⊥⊥ Y |Z

X Y

Z

A

(f) X ̸⊥⊥ Y |Z

Figure 4: Some example of active and inactive triplets

Here in part (e) we see that by d-separation, node A should have been inactive, but since it’s
parents Z are conditioned on, and it is a deterministic node, it is active as well.



1.5 Do-Calculus
In Causal Analysis, a primary tool is using interventions. To understand the effects of these
interventions from the data available in the observable world, we employ the following trans-
formations:

• Rule 1: Adding/removing Observations

P (y|do(x), z, w) = P (y|do(x), w) if(Y ⊥⊥ Z|W )GX

• Rule 2: Action/observation exchange

P (y|do(x), do(z), w) = P (y|do(x), z, w) if(Y ⊥⊥ Z|X,W )GXZ

• Rule 3: Adding/removing Actions

P (y|do(x), do(z), w) = P (y|do(x), w) if(Y ⊥⊥ Z|X,W )GXZ(W )

Where Z(W ) are the set of Z nodes which are not ancestors of any W-node in GX

These rules, along with the probability axioms are used to identify interventional experiments
in Causal Graphs.

Soundness and Completeness
For the task of causal identifiablity of interventional distribution from P (v), the causal quantity
Q = P (y|do(x)) is identifiable from P (v) and G if and only if there exists a sequence of
application of the rules of do-calculus and the probability axioms that reduces Q into a do-free
expression.



2 My Contributions

• Deterministic Do-Calculus (D-Do Calculus)

• Soundness of D-Do Calculus

• Examples where Do Calculus fails and we utilize D-Do Calculus

In the following sections, we will look at these contributions in detail

2.1 D-Do-Calculus
Now shifting to the deterministic relaxation, we notice that if we were to rewrite the Indepen-
dence relations in terms of D-Separation (in place of d-separation) we would get the corre-
sponding D-Do-Calculus equations. (Here⊥⊥D corresponds to the D-Separation Independence)

• Rule 1: Adding/removing Observations

P (y|do(x), z, w) = P (y|do(x), w) if(Y ⊥⊥D Z|W )GX

• Rule 2: Action/observation exchange

P (y|do(x), do(z), w) = P (y|do(x), z, w) if(Y ⊥⊥D Z|X,W )GXZ

• Rule 3: Adding/removing Actions

P (y|do(x), do(z), w) = P (y|do(x), w) if(Y ⊥⊥D Z|X,W )GXZ(W )

Where Z(W ) are the set of Z nodes which are not ancestors of any W-node in GX



2.1.1 Soundness
In this section, we prove soundness for these rules of Deterministic Do-Calculus in a manner
similar to (Pearl, 1995)

Rule 1
In any given causal model, we can write the values of each endogenous variable as:

Xi = fi(pai, ui)

Where pai signify the parents of the variable Xi in G and ui are the exogenous variables which
influence Xi For deterministic variables, this equation becomes:

X
(D)
i = fi(pai)

Also from (Pearl, 1995) we have the following definition:
Given two disjoint sets of variables, X and Y , the causal effect of X on Y , denoted pr(y|do(x)),
is a function from X to the space of probability distributions on Y For each realisation x of X ,
pr(y|do(x)) gives the probability of Y = y induced on deleting from the model all equations
corresponding to variables in X and substituting x for X in the remainder.

Moreover, by the Markovian property, we have the following:

pr(x1, . . . , xn) =
∏
i

pr(xi|pai)

Hence, we can get the following expression:

pr(x1, . . . , xn|do(x′
i)) =

{
pr(x1, . . . , xn)/pr(xi|pai) if xi = x′

i

0 if xi ̸= x′
i

Hence this expression just showcases the removal of the pr(xi|pai) term in the product.
Since our equations for deterministic nodes are just special cases of independence from

exogenous variables, we can see these equations apply to our deterministic case as well. In the
last case however, we would be dividing by 0 (in certain assignments due to the deterministic
nature), however if we look at it from removing certain terms from the product itself, we will
not run into that problem (can be fixed with a conditional check)

Hence, the probability equations left after a do-intervention are the same as the ones which
would infer the removal of all links between Xi and Pai, namely the graph G→ GX

Now we note that if (Y ⊥⊥ Z|W ) then pr(y|z, w) = pr(y|w), this follows from basic proba-
bility axioms and the definition of independence.

So, for our deterministic scenario, we have already proved that intervening on X (do(x)) is
equivalent to working with an alternative graph GX . Moreover, this intervention fixes the value
of X = x.

P (y|do(x), z, w) = P (y|do(x), w) if(Y ⊥⊥D Z|W )GX

Note that we use the D-separation independence in contrast to the d-separation one since we
are dealing with deterministic nodes.

This proves soundness for Rule 1 of the Deterministic Causal Calculus.



Rule 2
The graph GXZ only differs from GX in terms of edges from Z, hence all paths with an incoming
edge to Z (backdoor paths) are still present. The condition (Y ⊥⊥D Z|X,W )GXZ

ensures that
all backdoor paths from Z to Y are blocked by {X,W} in GX . In this scenario, intervening
Z = z or conditioning on Z = z will have the same effect on Y. This is because all backdoor
paths are blocked, so even on conditioning Z = z, no active paths will exist, hence causal
information flow would be the same as if intervening Z = z which would remove all incoming
edges (and hence backdoor-paths) from Z to Y. Moreover, we use ⊥⊥D here since for all causal
information flow from Z to Y to be blocked, we need to account for deterministic nodes in our
model. This proves soundness for Rule 2 of the Deterministic Causal Calculus.

Rule 3
Now consider the graph GX to which the intervention Fz → Z is added. If (Fz ⊥⊥ Y |W,Z)GX

then pr(y|do(x), do(z), w) = pr(y|do(x), w). Moreover, if (Y ⊥⊥ Z|X,W )GXZ(W )
and

(Y ⊥̸⊥ Fz|X,W )GXZ(W )
, then there must be an unblocked path from A ∈ Fz to Y that either is

a collider (→ A←) or is a directed path (→ A→). If there is such a path, let P be the shortest
such path.

If the path has a collider then we know (Y ⊥⊥ A|X,W )GXZ(W )
but (Y ⊥̸⊥ A|X,W )GX

. So
there must be a unblocked path from Y to A that passes through some B ∈ Z(W ) which is
either a collider or a directed path. If B is a collider, then some descendant of B ∈ W for the
path to be unblocked, but then B ̸ ∈Z(W ). Similarly, if it is a directed path → B → then
either the path from A to B ends in→ B, or B →. If it ends in an arrow pointing away from
B, then there must be a collider junction along the path from A to B (since arrow is outgoing
from A). In that case, for the path to be unblocked, W must be a descendant of B, but then B
would not be in Z(W). If it ends in an arrow pointing to B, then there must be an unblocked path
from B to Y in GX that is blocked in GXZ(W ). If this is true, then there is an unblocked path
from B to Y that is shorter than P, the shortest path. Due to these contradictions, this means that
(Y ⊥⊥ Z|X,W )GXZ(W )

=⇒ pr(y|do(x), do(z), w) = pr(y|do(x), w).
Since in our deterministic case, we have to additionally check for independencies arising

from the functional determinism, we replace the equation with (Y ⊥⊥D Z|X,W )GXZ(W )
=⇒

pr(y|do(x), do(z), w) = pr(y|do(x), w). This proves soundness for Rule 3 of our Deterministic
Do-calculus.



2.2 Examples
Here we will showcase cases where the introduction of determinism causes regular Causal Cal-
culus to fail.

X Y

Z

A

Consider the above figure, where Z is a deterministic node (Z = f(A)). Since Z is functionally
determined by A, if we condition on A, w.l.o.g we can condition on A,Z (by the deterministic
case).

Rule 1
If we wish to simplify Pr(y|do(a), x), we can use D-Do calculus Rule 1, to write
Pr(y|do(a), x) = Pr(y|do(a)) since (Y ⊥⊥D X|A)GA

. However, (Y ⊥̸⊥ X|A)GA
in the non-

deterministic case. So in this situation, regular Do-Calculus falls through.

Rule 2
If we wish to simplify Pr(y|do(a), do(x)), we can use D-Do calculus Rule 2, to write
Pr(y|do(a), do(x)) = Pr(y|do(a), x) since (Y ⊥⊥D X|A)GAX

. However, (Y ⊥̸⊥ X|A)GAX

in the non-deterministic case. So in this situation, regular Do-Calculus falls through.

Rule 3

X YZ

A

In the figure above, if we wish to simplify Pr(y|do(x), do(a)), we can use D-Do calculus
Rule 3, to write Pr(y|do(x), do(a)) = Pr(y|do(a)) since (Y ⊥⊥D X|A)GAX

, as intervening on
X and A implies intervening on Z as well. However, (Y ⊥̸⊥ X|A)GAX

in the non-deterministic
case. So in this situation, regular Do-Calculus falls through.

3 Conclusion/Future Scope

This paper serves to provide a framework to unify causality with determinism, and gives cer-
tain rules/examples for its use. Furthermore, subsequent work in this field can be to extend
determinism to identification algorithms, counterfactuals, and other causal frameworks.



References
David Galles and Judea Pearl. 1998. An axiomatic characterization of causal counterfactuals. Foundations of

Science, 3(1):151–182.

Dan Geiger, Thomas Verma, and Judea Pearl. 1990. Identifying independence in bayesian networks. Networks,
20(5):507–534.

Yimin Huang and Marco Valtorta. 2012. Pearl’s calculus of intervention is complete. arXiv preprint
arXiv:1206.6831.

Judea Pearl. 1995. Causal diagrams for empirical research. Biometrika, 82(4):669–688.

Judea Pearl and Rina Dechter. 2013. Identifying independencies in causal graphs with feedback. arXiv preprint
arXiv:1302.3595.


